Übersicht über die wichtigsten Maple-Befehle für die Oberstufe: Unterschied zwischen den Versionen

Aus Augenbit
Wechseln zu: Navigation, Suche
K (Lösung mit Maple 14)
K (Lösung mit Maple 14)
Zeile 199: Zeile 199:
  
 
===Lösung mit Maple 14===
 
===Lösung mit Maple 14===
 +
Am Beispiel einer Gleichung dritten Grades:
 +
 
restart;
 
restart;
 
   
 
   
Zeile 211: Zeile 213:
 
f := convert(%, fraction);  
 
f := convert(%, fraction);  
  
ScatterPlot(X, Y, fit = [a*x^3+b*x^2+c*x+d, x]);
+
ScatterPlot(X, Y, fit = [a*x^3+b*x^2+c*x+d, x]):gwp(%);
  
 
Das "convert(%, fraction)" dient in diesem Fall der bessern Übersicht über das Ergebnis.
 
Das "convert(%, fraction)" dient in diesem Fall der bessern Übersicht über das Ergebnis.
 
Man beachte die Vereinfachung im Plotbefehl!
 
Man beachte die Vereinfachung im Plotbefehl!
  
Noch zu klären: der GTR gibt den Regressionskoeffizienten r bzw r^2 aus, damit die Qualität der gefundenen Funktion abgeschätzt werden kann. Lösung in Maple?
+
Einen Regressionskoeffizienten wie im GTR kann Maple nicht ausgeben, behelfen kann man sich mit dem Aufruf der Option "residualmeansquare":
 +
 
 +
Fit(a*x^3+b*x^2+c*x+d, X, Y, x, output=residualmeansquare);
 +
 
 +
Je näher der so berechnete Wert an 0 liegt, desto genauer passt die errechnete Gleichung zu den Tabellenwerten.
  
 
==Worksheet zum Download==
 
==Worksheet zum Download==
 
[[Media:Einige_Maple_Befehle.mws]]
 
[[Media:Einige_Maple_Befehle.mws]]
 
Mit Firefox bitte mit rechter Maustaste herrunterladen.
 
Mit Firefox bitte mit rechter Maustaste herrunterladen.

Version vom 30. November 2011, 13:12 Uhr

Gesamtüberblick für Befehle und Maplefunktionen in der Oberstufe

Einige nützliche Maple-Befehle in Anlehnung an die Möglichkeiten des TI 84+:

1. Einige Rechenbefehle:

>5/7;

>sqrt(14);

>log[10](2);

>evalf(%,8);

>convert(81*degrees,radians); (Anmerkung: oder umgekehrt)

>Pi;

>exp(1);


2. Umgang mit Termen:

>restart; (Anmerkung: setzt alle Werte zurück)

>g1:=(x-5)^3*(x+5)*x;

>g1;

>subs(x=4,g1);

>eval(g1,x=exp(1));

>evalf(%);

>expand(g1);

>g2:=x^3-7*x^2+7*x+15;

>factor(g2);


3. Gleichungen und Gleichungssysteme lösen:

3.1 Wert für die Variable einsetzen:

>eval(g2=0,x=1);

3.2 Lösen:

>solve(g2=0);

>fsolve(g2+3,x);


3.3 Mit Parameter:

>g3:=a*x^2+b*x+c;

>solve(g3=0,x);

Oder Lösen als Matrix: Vorbreitung: Matrixoperationen zulassen:

> with(linalg):

LGS: 1*a+2*b=3 und -3*a-2*b=-1

> MA:=matrix(2,3,[1,2,3,-3,-2,-1]);

Auf Diagonale umformen:

> rref(MA);

also gilt: a=-1 und b=2

4. Gleichungssysteme:

>solve({x+y+z=a,2*x+y+z=3,x-y+2*z=0},{x,y,z});

4.1 Oder mit der Idee Matrix:

LGS: 1*a+2*b=3 und -3*a-2*b=-1

Vorbereitung: Matrixoperationen zulassen

>with(linalg):

4.2 Matrix eingeben:

>MA:=matrix(2,3,[1,2,3,-3,-2,-1]);

>MA[2,1];

Ergänzung zum Umgang mit Matrizen:

Immer das linalg-Paket aktivieren !!!!

> restart;

> with(linalg):

Matrix eingeben:

> A:=matrix([[1,2,3],[-1,2,-3],[4,5,6]]);

oder

> A:=matrix(3,3,[1,2,3,-1,2,-3,4,5,6]);

Einzelne Elemente ausgeben lassen:

> A[2,3];

Einheitsmatrix: (gleich viele Spalten wie Zeilen, nur in der Diagonalen 1-er)

> E:=matrix([[1,0,0],[0,1,0],[0,0,1]]);

Addieren und subtrahieren mit evalm (und mit Linalg-Paket!):

> B:=evalm(E-A);

Multiplizieren mit &*:

> evalm(A &* A);

Die inverse Matrix bilden, z.B. B^-1: (Das geht aber nur manchmal ohne Error)

> inverse(B);

Zum Befehl rref siehe weiter oben beim Lösen von Gleichungen.

4.3 Auf Diagonalgestalt umformen:

>rref(MA);

Also gilt: a=-1 und b=2.

5. Funktionen:

>f:=x->x^2;

>f(2*a);

>plot(f(x),x=-2..3,y=-1..10);


6. Ableitungen:

>df:=D(f);

>ddf:=D(D(f));

Gleichung von Tangente an der Berührstelle x=-1:

>solve((y-f(-1))/(x-(-1))=df(-1),{y});


7. Aufleiten (Stammfunktion bilden):

>f:=x->x^3-2*x+3;

>int(f(x),x);

8. Flächeninhalt zwischen Kurve und x-Achse zwischen den Grenzen a und b:

>int(f(x),x=-3..0);

>evalf(%,4);

9. Regression:

9.1 Lösung mit Maple 9.x

>restart;

> with(stats): with(statplots): with(plots):

Warning, these names have been redefined: anova, describe, fit, importdata, random, statevalf, statplots, transform

Warning, these names have been redefined: boxplot, histogram, scatterplot, xscale, xshift, xyexchange, xzexchange, yscale, yshift, yzexchange, zscale, zshift

Warning, the name changecoords has been redefined

>xwerte:=[1,2,4,5,6]; ywerte:=[.5,1,1.5,3,4];

>reg:=fit[leastsquare[[x,y],y=a*x^3+b*x^2+cx+d]]([xwerte,ywerte]);

>f:=eval(rhs(reg));

>punkte:=scatterplot(xwerte,ywerte, color=black, symbol= cross, labels=["x","y"]):

>kurve:=plot(f,x=0..8,color=red):

>display([punkte,kurve]);

Hinweis: So lassen sich Polynom-Regressionen beliebigen Grades durchführen. Exponentielle oder sinusförmige Regressionen gehen so leider nicht!!! y=a*b^x ; ln auf beiden Seiten dieser Gleichung liefert: ln(y)=ln(a)+x*ln(b) Eine lineare Regression liefert also ln(a) und ln(b).

Ab Maple 10 wäre das Thema Regression durch den Befehl Fit im Paket Statistics sehr einfach!!!

Lösung mit Maple 14

Am Beispiel einer Gleichung dritten Grades:

restart;

with(Statistics):

X := [1, 2, 4, 5, 6];

Y := [.5, 1, 1.5, 3, 4];

Fit(a*x^3+b*x^2+c*x+d, X, Y, x);

f := convert(%, fraction);

ScatterPlot(X, Y, fit = [a*x^3+b*x^2+c*x+d, x]):gwp(%);

Das "convert(%, fraction)" dient in diesem Fall der bessern Übersicht über das Ergebnis. Man beachte die Vereinfachung im Plotbefehl!

Einen Regressionskoeffizienten wie im GTR kann Maple nicht ausgeben, behelfen kann man sich mit dem Aufruf der Option "residualmeansquare":

Fit(a*x^3+b*x^2+c*x+d, X, Y, x, output=residualmeansquare);

Je näher der so berechnete Wert an 0 liegt, desto genauer passt die errechnete Gleichung zu den Tabellenwerten.

Worksheet zum Download

Media:Einige_Maple_Befehle.mws Mit Firefox bitte mit rechter Maustaste herrunterladen.