Beispiel: Flächen zwischen einer Kurve und der x-Achse
Aus Augenbit
Version vom 8. Februar 2007, 10:22 Uhr von Stephan (Diskussion | Beiträge)
Mathematische Hinweis
Um die Fläche zwischen einer Kurve und der x-Achse auf einem Interval zu bestimmen benutzt man folgende Vorgehensweise:
1 Nullstellen der Funktion bestimmen
2 Bestimmme mit Hilfe der Nullstellen die Teilintervalle die die Integration
3 Berechne die Beträge der Teilintervalle
4 Die Addition der Beträge der Intervalle auf den Teilintervallen liefert die Gesamtfläche.
Beispiel
> f:=x->x^4-4*x^2;
f := x -> x^4-4*x^2
1 Nullstellen bestimmen:
> fsolve(f(x)=0);
-2.000000000, 0., 0., 2.000000000
Die Nullstellen liegen bei +- 2 und 0
2 Teilfläche -2..0
> A_1:=int(f(x), x=-2..0);
A_1 := -64/15
2 Teilfläche 0..2
> A_2:=int(f(x), x=0..2);
A_2 := -64/15
3 und 4 Gesamtfläche
> A:=abs(A_1)+abs(A_2);
A := 128/15