GTR - Maple Tabelle: Unterschied zwischen den Versionen

Aus Augenbit

Zeile 138: Zeile 138:
== Maple 10 und früher: ==
== Maple 10 und früher: ==


===linalg-Paket aktivieren !!!!===
*linalg-Paket aktivieren !!!!
   
   
> restart;
> restart;
Zeile 144: Zeile 144:
> with(linalg):
> with(linalg):


==Matrix eingeben==
*Matrix eingeben


> A:=matrix([[1,2,3],[-1,2,-3],[4,5,6]]);
> A:=matrix([[1,2,3],[-1,2,-3],[4,5,6]]);
Zeile 152: Zeile 152:
> A:=matrix(3,3,[1,2,3,-1,2,-3,4,5,6]);
> A:=matrix(3,3,[1,2,3,-1,2,-3,4,5,6]);


==Einzelne Elemente ausgeben lassen==
*Einzelne Elemente ausgeben lassen


> A[2,3];
> A[2,3];


==Einheitsmatrix: (gleich viele Spalten wie Zeilen, nur in der Diagonalen 1-er)==
*Einheitsmatrix: (gleich viele Spalten wie Zeilen, nur in der Diagonalen 1-er)


> E:=matrix([[1,0,0],[0,1,0],[0,0,1]]);
> E:=matrix([[1,0,0],[0,1,0],[0,0,1]]);


==Addieren und subtrahieren mit evalm (und mit Linalg-Paket!):==
*Addieren und subtrahieren mit evalm (und mit Linalg-Paket!):


>  B:=evalm(E-A);
>  B:=evalm(E-A);


==Multiplizieren mit &*:==
*Multiplizieren mit &*:
> evalm(A &* A);
> evalm(A &* A);


==Die inverse Matrix bilden, z.B. B^-1: (Das geht aber nur manchmal ohne Error)==
*Die inverse Matrix bilden, z.B. B^-1: (Das geht aber nur manchmal ohne Error)
> inverse(B);
> inverse(B);


==Auf Diagonalgestalt umformen==
*Auf Diagonalgestalt umformen
Zum Befehl rref siehe weiter oben beim Lösen von Gleichungen.
Zum Befehl rref siehe weiter oben beim Lösen von Gleichungen.


Zeile 177: Zeile 177:
Also gilt: a=-1 und b=2.
Also gilt: a=-1 und b=2.


==Worksheet zu Matrizen==
===Worksheet zu Matrizen unter Maple 9===
[[Media:Matrizen.mws]]
[[Media:Matrizen.mws]]



Version vom 10. Juli 2014, 11:37 Uhr

Einige Rechenbefehle

5 durch 7

>5/7;

Wurzel aus 14

>sqrt(14);

n-te Wurzel aus x

>root[n](x)

z.B.

>root[3](27)

Logarithmus

Logarithmus von 2 zur Basis 10:

>log[10](2);

>evalf(%,8);

Logarithmus naturale von 5:

>ln(5);

Umrechnung zwischen Grad- und Bogenmaß

>convert(81*degrees,radians); (Anmerkung: oder umgekehrt)

[math]\displaystyle{ \pi }[/math] (\pi)

>Pi;

Eulersche Zahl

>exp(1);


e hoch 2

>exp(2);

Worksheet zu den Rechenbefehlen

Media:Rechenoperationen.mws

Arbeiten mit dem Speicher

Den Buchstaben A,B,C können beliebige Werte zugeordnet werden. Ein Beispiel verdeutlicht das Vorgehen:

>A:=5;

Die Zahl 5 wird dem Buchstaben zugeordnet mit := .

Möchte man ein Zwischenergebnis einem Speicher zuordnen, dann geht das so:

>B:=%;

Speicher zurücksetzen

restart;

Worksheet zum Speicher

Media:Speicher.mws

Umgang mit Termen

Einfache Operationen

Maple heißt für Maple
>restart; "Setze alle Werte zurück"
>g1:=(x-5)^3*(x+5)*x; "Lege in der Variable g1 den Term ab"
>g1; "Gib mir den Inhalt der Variable g1 aus"
>subs(x=4,g1); "Ersetze in der Variable g1 das x durch die Zahl 4"
>eval(g1,x=exp(1)); "Setze in die Variable g1 e für x ein"
>evalf(%); "Berechne das numerische Ergebnis der letzten Operation"
>expand(g1); "Multipliziere den Term in der Variable g1 aus"
>g2:=x^3-7*x^2+7*x+15; "Lege in der Variable g2 den Term ab"
>factor(g2); "Zerlege den Term in g2 in seine Faktoren"
>solve(g2=0); "Löse die Gleichung x^3-7*x^2+7*x+15=0"
>fsolve(g2); "Löse die Gleichung x^3-7*x^2+7*x+15=0"
>fsolve(g2+3,x); "Addiere 3 zum Term in g2 hinzu und gib die Lösung für den Fall aus, dass der Term =0 gesetzt wird"


Terme mit Parametern

>g3:=a*x^2+b*x+c;

>solve(g3=0,x); Hier gibt das x am Ende der Klammer an, dass die Lösung für den Parameter x gesucht wird. Entsprechend geht auch:

>solve(g3=0,a);

Worksheet zu Termen

Media:Terme.mws

Gleichungssysteme

mit solve lösen

>solve({x+y+z=a,2*x+y+z=3,x-y+2*z=0},{x,y,z});

als Matrix lösen

LGS: 1*a+2*b=3 und -3*a-2*b=-1

Vorbereitung: Matrixoperationen zulassen

>with(linalg):

Matrix eingeben:

>MA:=matrix(2,3,[1,2,3,-3,-2,-1]);

>MA[2,1];

Gauß-Verfahren

Der GTR löst und stellt Lösungen für Gleichungssysteme dar, indem das Gauß-Verfahren zum Einsatz kommt. Die Vorgehensweise entspricht dabei der unter Maple bei Einsatz des Befehls rref aus dem Paket linalg. Näheres siehe Punkt 2 der Seite Lineare Gleichungssyteme.


weitere Varianten

siehe Seite Lineare Gleichungssyteme

Worksheet zu Gleichungssystemen

Media:Gleichungssysteme.mws

Umgang mit Matrizen

Maple 10 und früher:

  • linalg-Paket aktivieren !!!!

> restart;

> with(linalg):

  • Matrix eingeben

> A:=matrix([[1,2,3],[-1,2,-3],[4,5,6]]);

oder

> A:=matrix(3,3,[1,2,3,-1,2,-3,4,5,6]);

  • Einzelne Elemente ausgeben lassen

> A[2,3];

  • Einheitsmatrix: (gleich viele Spalten wie Zeilen, nur in der Diagonalen 1-er)

> E:=matrix([[1,0,0],[0,1,0],[0,0,1]]);

  • Addieren und subtrahieren mit evalm (und mit Linalg-Paket!):

> B:=evalm(E-A);

  • Multiplizieren mit &*:

> evalm(A &* A);

  • Die inverse Matrix bilden, z.B. B^-1: (Das geht aber nur manchmal ohne Error)

> inverse(B);

  • Auf Diagonalgestalt umformen

Zum Befehl rref siehe weiter oben beim Lösen von Gleichungen.

>rref(MA);

Also gilt: a=-1 und b=2.

Worksheet zu Matrizen unter Maple 9

Media:Matrizen.mws

Maple 11 und höher:

Paket LinearAlgebra aktivieren

> restart;

> with(LinearAlgebra):

Groß- und Kleinschreibung beachten!

Matrix eingeben

> A:=Matrix([[1,2,3],[-1,2,-3],[4,5,6]]);

oder

> A:=Matrix(3,3,[1,2,3,-1,2,-3,4,5,6]);

Einzelne Elemente ausgeben lassen

> A[2,3];

Einheitsmatrix: (gleich viele Spalten wie Zeilen, nur in der Diagonalen 1-er)

> E:=Matrix([[1,0,0],[0,1,0],[0,0,1]]);

Addieren und subtrahieren mit evalm (und mit Linalg-Paket!):

> B:=evalm(E-A);

Multiplizieren mit &*:

> evalm(A &* A);

Die inverse Matrix bilden, z.B. B^-1: (Das geht aber nur manchmal ohne Error)

> MatrixInverse(B);

Auf Diagonalgestalt umformen

Zum Befehl rref siehe weiter oben beim Lösen von Gleichungen.

>ReducedRowEchelonForm(MA);

Also gilt: a=-1 und b=2.

Funktionen

Eingabe

für einfache Operationen reicht diese Variante:

y=0,37x+2,53 wird zu:

y:=0.37*x+2.53;

Anstelle von Komma nimmt man Punkt.

Funktionen im Sinne von f(x)=0,37x+2,53 gibt man ein als

>f:=x->0.37x+2.53;

heißt: "Ordne jedem x einen Wert zu der sich so berechnet: 0.37x+2.53"

ein weiteres Beispiel:

>f:=x->x^2;

Ausgabe des Werts an einer bestimmten Stelle

>f(2);

>f(2*a);

Funktionsgraph

>plot(f(x),x=-2..3,y=-1..10);

Ableitung, Aufleitung, Integration

siehe Ableiten und Integrieren

ableiten dos und donts

Ableiten beim GTR (TI-84 plus)

  • Der GTR kann an einer Stelle der Funktion die numerische Ableitung bilden: z.B. die Ableitung an der Stelle x=2 der Funktion f(x)=2x²+5x (=13) --> im MATH-Menü unter dem Befehl nDeriv
  • Er kann NICHT die Ableitung an sich ausgeben. ABER: Er kann die Ableitung grafisch ausgeben. Anschließend lässt sich die Ableitung durch Regression der Wertetabelle berechnen.

integrieren dos und donts

Der GTR kann integrieren, aber nich aufleiten. Stammfunktionen müssen auch von maple-Benutzern von Hand gebildet werden. Integriert wird dann wie in Ableiten und Integrieren:

>int(f(x),x=a..b)

wobei die Funktion natürlich vordefiniert und die Grenzen a und b eingesetzt werden müssen.

Worksheet zu Funktionen

Media:Funktionen.mws

Tangenten- und Normalengleichungen bestimmen

Was der GTR per Knopfdruck kann, ist hier als Worksheet umgesetzt. Damit wird zum Bestimmen der Gleichung nur noch die Funktionsgleichung und die Stelle der Tangente bzw. Normalen benötigt.

Funktionsanalyse mit Hilfe der Prozeduren

Wertetabelle einer Funktion

Zur Darstellung einer Wertetabelle muss man die Prozedur einmailg in Maple installieren. Entsprechend der | Anleitung.

Als nächstes muss man die Prozedur mit dem Befehl

read "Prozeduren.m";

aufrufen.

Mit dem Befehl

>wertetabelle(y, x= 0..10);

werden alle Werte zwischen 0 und 10 ausgegeben.

Schaubild einer Funktion

> plot(y,x=0..10);

Die Funktion f wird im Bereich zwischen 1 und 10 dargestellt.

Nullstellen bestimmen

> read "Prozeduren.m";

Einbinden, wenn noch nicht eingebunden.

1. Muss die Funktion die zu bestimmen ist definiert werden.

> f:=x->3*x+2;

2. Mit diesem Befehl werden die Nullstellen der Prozedur f ermittelt. Diese werden in der Variablen Nullstellen abgespeichert.

> nullstellen(f);

3. Der Inhalt der Variablen wird aufgerufen mit:

> Nullstellen;

Schnittpunkte bestimmen

> read "Prozeduren.m";

Einbinden, wenn noch nicht eingebunden.

1. Die Funktionen f (x) und g(x) für die der Schnittpunkt bestimmt werden soll definieren.

> g:= x -> -x^2+5;

> f:= x -> -1/4*x^2+2;

2. Mit diesem Befehl werden die Schnittpunkte bestimmt:

> schnittpunkte(f,g);

Die erste Zahl in einer eckigen Klammer ist die x-Wert, die Zweite der y-Wert.

3. Beide Funktionen lassen sich wie folgt in einem Schaubild darstellen.

> plot({f(x),g(x)},x=-4..4);

Betrag f(x) zeichnen

Der Befehl Betrag ist für Maple abs().

Also gibst du einfach deine Funktion wie folgt ein:

> f:=x->abs(2-x);

f := x -> | 2 - x |

Anschließend muss die Funktion nur noch mit plot gezeichnet werden.

> plot(f(x),x=-10..14);

Plot Betrag von X2.gif

Worksheet zu den Prozeduren

Hier befindet sich das ganze noch als Worksheet zu ausprobieren.

Media:GTR.mws

Funktionsanalyse ohne Prozeduren

Hoch und Tiefpunkte bestimmen

Zum Bestimmen von Hoch- und Tiefpunkten kann man auch die Befehle minimize und maximize benutzen. Bei dieser Möglichkeit ist es auch möglich den Bereich anzugeben. Achtung! Der hier dargestellte Weg findet Extremstellen bei trigonometrischen Funktionen nur eingeschränkt! Zur Ausgabe aller Maxima und Minima muss die Funktion mehrfach mit unterschiedlichen Bereichen angewendet werden!

restart;

Funktion definieren

f(x):=sin(x)+4;

plot(f(x), x=0..2*Pi);

Tiefpunkt:

Maple 9.5

minimize(f(x), x=0..2*Pi, location);

"location" dient dazu die x-Stellen zu ermitteln.

Maple 14

with(Optimization);

Minimize(f(x),x=0..2*Pi);

Maple 15

Minimize(f(x),x=0..2*Pi);

Hochpunkt:

Maple 9.5

maximize(f(x), x=0..2*Pi, location);

Maple 14

with(Optimization);

Maximize(f(x),x=0..2*Pi);

Maple 15

Maximize(f(x),x=0..2*Pi);

Übung zum Download

Nullstellen bestimmen

hier liegen zwei selbsterklärende Worksheets zum Download, benötigt wird die hier gennate Erweiterung "AllSolutions = true" ausschließlich bei trigonometrischen Funktionen.

Wendepunkte "von Hand" bestimmen

Problemstellung: die Prozedur "Wendepunkte" liefert für trigonometrische Funktionen nur ein Ergebnis. Ursache: Maple erkennt die Periodizität der Funktion, verschweigt diese aber in der Prozedur. Deshalb der folgende Workaround:

Maple 9

  • Funktion definieren

> f:=x->1.4*sin((Pi/6.15)*(x-7))+5.2;

  • zweite und dritte Ableitung werden gebildet und als f2 und f3 in den Speicher gelegt..

> f1:=D(f):

> f2:=D(f1):

> f3:=D(f2):

  • Maple gibt die erste Stelle aus, an der die zweite Ableitung =0 ist.

> solve(f2(x)=0);

7.

  • Maple gibt dasselbe nochmal aus, hinter der Stelle steht +Faktor*_Z1, _Z1 ist der Platzhalter für jede ganze Zahl.

_EnvAllSolutions:=true;

> solve(f2(x)=0);


7.+6.150000001*_Z1

  • von Hand ausrechnen, welches Ergebnis sich für _Z1=1 (etc.) ergibt, dann hat man die Stellen der weiteren Wendepunkte.

> 7.+6.150000001*1;

13.15000000

  • hinreichende Bedingung mit f3 überprüfen (\not 0 heißt =Wendepunkt)

> evalf(f3(7));

-.1866174739

> evalf(f3(13.15));

.1866174739

  • x-Werte eingeben, um die y-Werte zu berechnen.

> f(7);

5.2

> f(13.15);

1.4*sin(.9999999999*Pi)+5.2

Worksheet zum Download

Worksheet zum Download

Maple 14

  • Funktion definieren

> f:=x->1.4*sin((Pi/6.15)*(x-7))+5.2;

  • zweite und dritte Ableitung werden gebildet und als f2 und f3 in den Speicher gelegt..

> f1:=D(f):

> f2:=D(f1):

> f3:=D(f2):

  • Maple gibt die erste Stelle aus, an der die zweite Ableitung =0 ist.

> solve(f2(x)=0);

7.

  • Maple gibt dasselbe nochmal aus, hinter der Stelle steht +Faktor*_Z1, _Z1 ist der Platzhalter für jede ganze Zahl.

> solve(f2(x)=0,AllSolutions=true);

7.+6.150000001*_Z1

  • von Hand ausrechnen, welches Ergebnis sich für _Z1=1 (etc.) ergibt, dann hat man die Stellen der weiteren Wendepunkte.

> 7.+6.150000001*1;

13.15000000

  • heinreichende Bedingung mit f3 überprüfen (\not 0 heißt =Wendepunkt)

> evalf(f3(7));

-.1866174739

> evalf(f3(13.15));

.1866174739

  • x-Werte eingeben, um die y-Werte zu berechnen.

> f(7);

5.2

> f(13.15);

1.4*sin(.9999999999*Pi)+5.2

Worksheet zum Download

Worksheet zum Download

Schnittpunkte "von Hand" bestimmen

die Problemstellung ist dieselbe wie bei den Wendepunkten "von Hand": mit trigonometrischen Funktionen kommt die Prozedur nicht zurecht.

Maple 9

>_EnvAllSolutions:=true

>solve(sin(x)=0.5)

.523+2.094*_B1+6.283*_Z1

zur Bedeutung von _Z1 und _B1 siehe hier.

Maple 14

>solve(sin(x)=0.5, AllSolutions=true)

.523+2.094*_B1+6.283*_Z1

zur Bedeutung von _Z1 und _B1 siehe hier.

Regression:

Lösung mit Maple 9.x

>restart;

> with(stats): with(statplots): with(plots):

Warning, these names have been redefined: anova, describe, fit, importdata, random, statevalf, statplots, transform

Warning, these names have been redefined: boxplot, histogram, scatterplot, xscale, xshift, xyexchange, xzexchange, yscale, yshift, yzexchange, zscale, zshift

Warning, the name changecoords has been redefined

>xwerte:=[1,2,4,5,6]; ywerte:=[.5,1,1.5,3,4];

>reg:=fit[leastsquare[[x,y],y=a*x^3+b*x^2+cx+d]]([xwerte,ywerte]);

>f:=eval(rhs(reg));

>punkte:=scatterplot(xwerte,ywerte, color=black, symbol= cross, labels=["x","y"]):

>kurve:=plot(f,x=0..8,color=red):

>display([punkte,kurve]);

Hinweis: So lassen sich Polynom-Regressionen beliebigen Grades durchführen. Exponentielle oder sinusförmige Regressionen gehen so leider nicht!!! y=a*b^x ; ln auf beiden Seiten dieser Gleichung liefert: ln(y)=ln(a)+x*ln(b) Eine lineare Regression liefert also ln(a) und ln(b).

Ab Maple 10 wäre das Thema Regression durch den Befehl Fit im Paket Statistics sehr einfach!!!

Worksheet zum Download

Media:Regression_M9.mws

Lösung mit Maple 14

Am Beispiel einer Gleichung dritten Grades:

restart;

with(Statistics):

X := [1, 2, 4, 5, 6];

Y := [.5, 1, 1.5, 3, 4];

Fit(a*x^3+b*x^2+c*x+d, X, Y, x);

f := convert(%, fraction);

ScatterPlot(X, Y, fit = [a*x^3+b*x^2+c*x+d, x]):gwp(%);

Das "convert(%, fraction)" dient in diesem Fall der bessern Übersicht über das Ergebnis. Man beachte die Vereinfachung im Plotbefehl!

Einen Regressionskoeffizienten wie im GTR kann Maple nicht ausgeben, behelfen kann man sich mit dem Aufruf der Option "residualmeansquare":

Fit(a*x^3+b*x^2+c*x+d, X, Y, x, output=residualmeansquare);

Je näher der so berechnete Wert an 0 liegt, desto genauer passt die errechnete Gleichung zu den Tabellenwerten.

Zip-File zum Download

Dieses ZIP enthält Worksheets zur Regression für folgende Funktionstypen:

  • Geradenfunktionen
  • Funktionen 2. Grades
  • Funktionen 3. Grades
  • Funktionen 4. Grades
  • sin-Funktionen
  • ExponenteialFunktionen

Download des ZIP-Files (26kB)

Stochastik

  • Fakultät: analog zur Standardschreibweise, z. B. 6!
  • Binomialkoeffizient [math]\displaystyle{ n \choose k }[/math]: binomial (n,k)

Ziehen mit Zurücklegen

Gesamtzahl aller möglichen Pfade

n:=2; ("Kugeln im Lostopf")

k:=5; ("Anzahl der Ziehungen")

n^k;


Ziehen ohne Zurücklegen

Anzeigen der möglichen Pfade

Ereignisse a,b,c

with(combinat);

permute([a,b,c],2);

Zahl der möglichen Pfade

with(combinat);

numbperm([a,b,c],2);

Bernoulli-Formel

Im GTR is die Bernoulli-Formel hinterlegt, Maple-Benutzer legen sich am besten ein Worksheet dazu an.

Dabei behandet man die Bernoulliformel wie eine Funktion:

B:=k->binomial(n,k)*(p^k)*(1-p)^(n-k);

Definiert man dann n und k (n:= bzw. p:=), kann man über B(k) errechnen, mit welcher Wahrscheinlichkeit das Ereignis eintritt.

Im GTR werden die Funktion binpdf bzw. binompdf und bincdf bzw. binomcdf für die Stochastik verwendet. Die Entsprechungen dafür finden sich im folgenden Worksheet.

Sammlung der Maple-Befehle

Media:Stochastik.mws


Vektoren

siehe Seite Vektoren

seltsame Ergebnisse

bei einigen Rechenoperationen kann es zu unerwarteten Ausgaben kommen. Diese "seltsamen Ergebnisse" sind hier dokumentiert. In der Regel kann man Maple mit Hilfe von about() eine Antwort entlocken.

I

Eine leichte Aufgabe für Maple:

>solve(x^2=-25);

5*I, -5*I

>about(I)

I:

All numeric values are properties as well as objects. Their location in the property lattice is obvious, in this case complex(extended_numeric).

Heißt: Maple hat hier eine Lösung gefunden, diese ist aber in der Menge der komplexen Zahlen zu finden. Da sich die Mathematik in der Schule nur in der Menge der reellen Zahlen abspielt, kann man diese Antworten in der Regel getrost ignorieren.

Übrigens: fsolve bringt hier keine Antwort.

_Z1

oder auch _Z2, _Z3 und so weiter.

Beispiel: Schnittpunkte der Sinus- und der Cosinusfunktion suchen

>solve(sin(x)=cos(x), AllSolutions=true);

1/4*Pi+Pi*_Z1

so als Ergebnis zu bekommen bei der Überschrift Wendepunkte "von Hand" bestimmen auf dieser Seite.

>about(_Z1);

Originally _Z1, renamed _Z1~: is assumed to be integer

Heißt: Maple gibt aus "Du wolltest ja alle Lösungen haben (AllSolutions=true), dann setze für _Z1 die dir passende Zahl aus der Menge der ganzen Zahlen ein." - sprich, Maple verweist auf die Periodizität einer Lösung.

_B1

Beispiel: An welchen Stellen ist der Sinus von x=0,5

>solve(sin(x)=0.5, AllSolutions=true);

.523+2.094*_B1+6.283*_Z1

about(_B1);

Originally _B1, renamed _B1~: is assumed to be OrProp(0,1)


Heißt: Maple gibt wie bei _Z1 aus "Du wolltest ja alle Lösungen haben (AllSolutions=true), dann setze für _Z1 die dir passende Zahl aus der Menge der ganzen Zahlen ein. Und _B1 kann den Wert 0 oder den Wert 1 annehmen" - Maple verweist auch hier auf die Periodizität einer Lösung.